A catalytic asymmetric strecker-type reaction promoted by Lewis acid-Lewis base bifunctional catalyst.
نویسندگان
چکیده
A general asymmetric Strecker-type reaction is reported, catalyzed by the Lewis acid-Lewis base bifunctional catalyst 1. The reaction of trimethylsilyl cyanide (TMSCN) with various fluorenyl imines, including n-aldimines and alpha,beta-unsaturated imines, proceeds with good to excellent enantioselectivities in the presence of a catalytic amount of phenol as additive (20 mol%) (catalytic system 1). The products were successfully converted to the corresponding amino acid derivatives in high yields without loss of enantiomeric purity. Furthermore, hydrogenation or dihydroxylation of the products from alpha,beta-unsaturated imines afforded saturated or functionalized aminonitriles also without loss of enantiomeric purity. The absolute configuration of the products and a control experiment using catalyst 2 supported the proposed dual activation of the imine and TMSCN by the Lewis acid (Al) and the Lewis base moiety (phosphine oxide) of 1. From the mechanistic studies including kinetic and NMR experiments of the catalytic species, the role of PhOH seems to be a proton source to protonate the anionic nitrogen of the intermediate. Specifically, we have found that TMSCN is more reactive than HCN in this catalytic system, probably due to the activation ability of the phosphine oxide moiety of 1 toward TMSCN. This fact prompted us to develop the novel catalytic system 2, consisting of 1 (9 mol%), TMSCN (20 mol%) and HCN (1.2 mol eq). This new system afforded comparable results with obtained by system 1 (1 (9 mol%)-TMSCN (2 mol eq)-PhOH (20 mol%)).
منابع مشابه
Recent progress in Lewis acid–Lewis base bifunctional asymmetric catalysis*
Two enantioselective cyanation reactions, the Strecker reaction of ketoimines and the Reissert reaction of pyridine derivatives, promoted by Lewis acid–Lewis base bifunctional asymmetric catalysts are described.
متن کاملBifunctional asymmetric catalysis: a tandem nucleophile/Lewis acid promoted synthesis of beta-lactams.
[reaction: see text]. We describe a superior procedure for the catalytic, asymmetric synthesis of beta-lactams using a bifunctional catalyst system consisting of a chiral nucleophile and an achiral Lewis acid.
متن کاملCatalytic asymmetric 1,4-additions of beta-keto esters to nitroalkenes promoted by a bifunctional homobimetallic Co2-Schiff base complex.
Catalytic asymmetric 1,4-addition of beta-keto esters to nitroalkenes is described. 2.5 mol % of a homobimetallic Lewis acid/Brønsted base bifunctional Co2-Schiff base complex smoothly promoted the reaction in excellent yield (up to 99%), diastereoselectivity, and enantioselectivity (up to >30:1 dr and 98% ee). Catalyst loading was successfully reduced to 0.1 mol %. Mechanistic studies suggeste...
متن کاملMultifunctional asymmetric catalysis.
Two types of general and practical enantioselective catalysts, namely, bimetallic complexes and Lewis acid-Lewis base bifunctional catalysts were developed based on the concept of multifunctional catalysis. In the first part of this review, the first example of a catalytic enatioselective nitro-Mannich reaction as well as a direct catalytic enantioselective aldol reaction of 2-hydroxyacetopheno...
متن کاملBifunctional asymmetric catalysis: cooperative Lewis acid/base systems.
In the field of catalytic, asymmetric synthesis, there is a growing emphasis on multifunctional systems, in which multiple parts of a catalyst or multiple catalysts work together to promote a specific reaction. These efforts, in part, are result-driven, and they are also part of a movement toward emulating the efficiency and selectivity of nature's catalysts, enzymes. In this Account, we illust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical & pharmaceutical bulletin
دوره 48 10 شماره
صفحات -
تاریخ انتشار 2000